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LETTER TO THE EDITOR 

A relativistic effective Hamiltonian for S-state ions 

R Chatterjee and H A Buckmastert 
Department of Physics and Astronomy, The University of Calgary, Calgary, Alberta, 
CanadaTZN IN4 

Received 19 June 1991 

Abstract. This paper uses the ‘effective operator technique’ to develop a relativistic for- 
mulation todescribe the crystalline electric field splitting of an S-state ion. This formulation 
leads to an effective Hamiltonian which is capable of describing the ERP and WDOR spectra 
observed kom Sstate ions such as Gd’+. It replaces the traditional phenomenological spin 
Hamiltonian and reveals that all those total angular momentum tensor operators permitted 
by symmetry considerations are included. It is shown that Kramers’ theorem which is valid 
only for spin states must be modified to apply to only the lowest degenerate level of the 
g~~ndstateofanyionsincealltensoroperaton Tt(3)where kisoddandkZ lareallowed 
because J ,  and not S, is a good relativistic quantum number. 

Elliott and Stevens [I] were probably the first to recognize that the degeneracy of the 
ground state fora pure S-state ion could not be decreased by the presence of a crystalline 
electric field. In fact, the Zeeman interaction is the only non-zero interaction for a pure 
S-state ion [Z). Consequently, it is remarkable that the EPR and ENDOR spectra of S-state 
impurity ions in diamagnetic host lattices exhibit well developed fine structure and 
hyperline structure as well as shifts due to nuclear quadrupole interactions [1,3]. A 
phenomenological spin Hamiltonian was developed to parameterize the observed spec- 
tra [l,  31. The zero field splitting was described by spin angular momentum operators 
having the same transformation properties as the corresponding spherical harmonics 
required in the expansion of the potential due to a crystalline electric field of the 
appropriate symmetry [3]. The spin may be real or fictitious [l]. Odd rank terms were 
omitted because of Kramers’ theorem [4] that invokes the time reversal properties of a 
pure spin system [3]. 

Smith et& [S] have summarized the various mechanisms that had been proposed to 
explain the observed zero field splittings in the EPR spectra of S-state ion gadolinium 
(Gd3+). However these mechanisms are incapable of describing the observed splitting. 
The relativistic mechanism proposed by Wybourne [6] was the only mechanism suc- 
cessful in predicting splittings of the correct magnitude, but the sign was incorrect. He 
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used the concept of an ‘effective operator’ introduced by Sandars and Beck [7] to show 
that the non-relativistic crystalline electric field Hamiltonian 

H’& = 2 A $ r k C t  (1) 
where C$ is a Racah irreducible tensor operator [8,9] can be replaced by 

where W(”() $S,,L) is an ‘effective’ double tensor operator [6]. 
The relativistic formulation requires the use of the total angular momentum J =  

L + S because J is a constant of the motion or a good relativistic quantum number [2] 
and involves Russel-Saunders or LS coupling [7] whilst the orbital L and spin S angular 
momenta are not good relativistic quantum numbers. 

This paper is the logical extension of the effective operator technique concepts 
introduced by Wybourne [6] and their generalization by Chatterjee and Buckmaster 
[IO]. It is assumed that the matrix elements are such that 

(ntfjmlA!/C: In’&l’j’m’) = AX,(ntfjmIbk(k,kf)W(*.*i) :lfl‘*l‘j”‘). (3) 
The Wigner-Eckart theorem [8,9,11] can be used to reduce (3) 

Ak(nlllrk Iln’l‘)(nHjllCk IIn‘Bl’j’) = b,(k,kf)(ntfjllW(kC~)klln’&[’j). (4) 
It can be shown following Yutsis et a1 [12] and Rotenberg et a1 [ 131 that 

[(2k, + 1)(2kf + I)]@(Zj + I)(2j’ + 1 ) ~  

where 

Rfi. = rk(F,Fr + GjCi.) dr. 

F and G are the large and small components of the Dirac eigenfunctions and j ,  j’ = 
I * t [14]. Note that ks takes only integer values because k, = 2s and is limited to zero 
or one since S = 4 for one-electron eigenstates. The spin-dependent terms bk(lk) are 
zero in the non-relativistic limit [14]. 

The application of this formalism can be demonstrated by the following example. 
The phenomenologicalspin Hamiltonian for the crystallineelectric fieldof C3h symmetry 
experienced by gadolinium (Gd3+) impurity ions in the diamagnetic lanthanide ethyl 
sulphate nonahydrate lattice [5] 

H N R  - CEF - 2 A;rkCk, 
k=2,3.4,5.6,7 r+0.+3.*6 

where the allowed values of k and q are determined from the tables in Prather [I51 and 
Tuszynski et a! [16] of the allowed tesseral harmonics constrained by the various non- 
cubic point group symmetries. The odd terms with values of k that are not allowed since 
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they are not time reversal invariant [3] are included since it will be shown that the 
relativistic operators corresponding to them are allowed. The ‘effective’ Hamiltonian 
corresponding to (6) is constructed by replacing each of the terms in (6) by the cor- 
responding relativistic effective operator, 

( 7 4  H N R  -AZrZ Z 
CEF - 0 cO(s) 

by 
H L F  = Aa[b2(02)Wcm)~ + bZ(ll)W(”)a 

+ b2(12)W(12)i + bz(13)W(L3)a] (7b) 
(84 H N R  cEF - - A$,r’C$(s) 

by 
HEEF = AS3[b3(03)W(m): + b3(12)W(12)$, 

+ b3(13)W(l3);3 + b3(14)W(’”:3] (86) 

HZEF = Adr4Cd(S) ( 9 4  

by 
H&F =Ad[b4(04)Wco4)~ + b4(13)W(l3); 

+ b4(14)W(14)d + b4(15)W(1s)8J (9b) 

(loa) H N R  - 5 5 5 
CEF - A3r c3(s) 

by 
HEEF = A:3[bs(05)W(os):3 + bs(14)W(14):3 

+ bS(15)W(”):, + b~(16)W(’~)5,3] (lob) 

HZEF = A8r6C$(S) (11a) 

by 
HSEF =A$[b6(06)W(06)$ + b6(15)W(”)8 

+ b6(16)W(16)8 + b6(17)w(’7)$] (1lb) 

H &  =A$r6C&(s) ( W  

by 
H% =A$6[b6(06)Wc06)t6 + b6(15)W(15)6,6 . 

+ b6(16)W(’6)6,6 + b6(17)W(17)6,6] (12b) 

HZEF = AL3r7Ci3(S) (134 

and 

by 
H f E F  = A7,,[b7(07)W(0’)$3 + b7(16)W(16)7,3 

+ b7(17)W(17)$3 + b7(18)W(18)$3]. (136) 
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The double tensors W('s'1): can be transformed into the product of single tensors 
using 

where the triangle rule A(k,klk) must be satisfied [2,8,9, lo]. k + k, + kl = 0 or 
0 k, + kl - k,O S k, + k - kland0 < k1+ k - k,wherek, + kl + kiseitheranoddor 
even integer. 

It is useful to collect those terms for which k, = 0 since these terms correspond to 
those in (6) except that they are now total angular momentum rather than spin angular 
momentum operators i.e. T$(J) rather than T $ ( S ) .  

The first term in (7b) reduces to 

HSEF = Aibz(02)W(m): = A:b2(02)T$(J) (154 
where b2(02) = -(2VZ/735)[25(R7/~,7p)' + 18(R5/2.5/z)2 + 6(R7p,s/z)2]. Similarly for 
(86): 

H&F = A:3b3(03)W(")$3 = A&b3(03)&(J) (156) 
where b3(03) = ( I ~ / ~ * ) ( R ~ / z . s / z ) ~ .  

For (9b) 

where b5(0S) = (4V'%/s39)(R7p,5/2)5. 
For ( l l b )  

H t E F  = A7,,b7(07)W('"):, = A$3b7(07)T$31J) (1%) 
where 6,(07) = 0. 

Waber and Cromer (171 have computed self-consistent relativistic DiracSlater 
eigenfunctions for some ions and obtained R7Iz,,p = 0.824 au and R5,z,51z = 0.804 au for 
Gd". Wybourne [18] has suggested that since R7lZ,* has not been computed, it can be 
estimated from (R?p,7/2 + R5/2,5/z)/2. 

Consequently, It has been shown that the relativistic effective operator formulation 
leads to relativistic effective Hamiltonians that involves all those total angular momen- 
tum tensor operators specified by the symmetry constraintsdetermined by thecrystalline 
electric field symmetery. The relativistic operators W('ikl): have been shown by 
Chatterjee and Buckmaster [lo] to be Hermitian provided that the definition 
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W('.'f)t(J)t = (-1)'-qW(k.kd!4, which is the double tensor generalization of 
T!(J)t = (-l)'-.Tk_,(J),isused[S, 191.The termsTL3(J)andTi3(J), whichsplit the 
J = 2% energy level, originate only from terms in the relativistic effective Hamiltonian 
for which the spin is zero. Consequently, other higher order terms are included in 
this relativistic effective Hamiltonian, which are not present in the zero-field splitting 
crystalline electric field terms of a phenomenological spin Hamiltonian. This splitting 
may be referred to as a relativistic splitting since it involves total angular momentum 
eigenfunctions rather than as aKramers' splittingthatinvolvesonly spin angular momen- 
tum eigenfunctions. It should be noted that a J = +t ground state will not be split by a 
relativistic effective operator W"') because this term is not permitted for a crystalline 
electric field of any symmetry 115,161 in agreement with the statement of Abragam and 
Bleaney [3] that the ground state of any Kramers' ion cannot be split by an electric field. 
This demonstrates that crystal field symmetry concepts and the restricted version of 
Kramers' theorem are consistent. It is not necessary to discuss the question of whether 
the 'effective' Hamiltonian is time reversal invariant [8,9] because this constraint was 
introduced only to ensure that non-relativistic phenomenological spin Hamiltonians 
satisfy Kramers' theorem. It should be noted that although the total angular mo- 
mentum tensor operators are not time reversal invariant since eT;(J)e-' = 
( - l ) k - T ! q ( J )  [S, 91. However, the introduction of tesseral total angular momen- 
tum operators [16]: 

c;~J) = [T; (J )  + (-1)k-9~k_q~a1/2 (164 

(166) 

and 

S$(J) = [Tkp(.t) - (-1)k-qTk_q(J)]/2i 
where C$(J) = T k ( J )  and Sk(J) = 0 fork = 2 resolves this deficiency, since 

ec;(J)e-I = c;(J) (174 

es;(J)e-l= s;(~). (176) 

and 

It is notationally awkward and inconvenient to introduce double tesseral operators, so 
the more traditional approach has been followed for simplicity. 

It should also be recalled that the ground state in the example of the gadolinium 
Gd3+ (4P, *S) is not a pure S-state. Wyboume 1181 has shown that the ground state 
eigenfunction is 0.986661*S7) + 0.161816PJ - 0.012316DD,). It is probable that this 
deviation fromapure S-statecombinedwith thefact that 4felectronsshould be described 
by relativistic eigenfunctions is the reason that the eight-fold degeneracy of the free-ion 
ground state for Gd3+ is partially lifted resulting in three doubly degenerate and two 
singly degenerate eigenstates with the I *a) level lowest. Finally, it is noted that this 
paper has demonstrated that the HZ& given by Buckmaster et aZ[19] has the correct 
form relativistically although the derivation was flawed because it used spin (S) rather 
than total angular momentum (J) and, consequently, violated Kramers' theorem, 
although the tesseral spin angular momentum operators were time reversal invariant 

In conclusion, it has been demonstrated by using a relativistic rather than a non- 
relativistic formulation of the Hamiltonian for the crystalline electric field that all those 
total angular momentum tensor operators permitted by symmetry considerations should 
be included in an effective rather than a spin Hamiltonian. 

[161. 
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